Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(17): 11311-11322, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623826

RESUMO

Hierarchical structure-within-structure assemblies offer a route toward increasingly complex and multifunctional materials while pushing the limits of block copolymer self-assembly. We present a detailed study of the self-assembly of a series of fluorinated high-χ block copolymers (BCPs) prepared via postmodification of a single poly(styrene)-block-poly(glycidyl methacrylate) (S-b-G) parent polymer with the fluorinated alkylthiol pendent groups containing 1, 6, or 8 fluorinated carbons (termed trifluoro-ethanethiol (TFET), perfluoro-octylthiol (PFOT), and perfluoro-decylthiol (PFDT), respectively). Bulk X-ray scattering of thermally annealed samples demonstrates hierarchical molecular assembly with phase separation between the two blocks and within the fluorinated block. The degree of ordering within the fluorinated block is highly sensitive to synthetic variation; a lamellar sublattice was formed for S-b-GPFOT and S-b-GPFDT. Thermal analyses of S-b-GPFOT reveal that the fluorinated block exhibits liquid crystal-like ordering. The complex thin-film self-assembly behavior of an S-b-GPFOT polymer was investigated using real-space (atomic force microscopy and scanning electron microscopy) and reciprocal-space (resonant soft X-ray scattering (RSoXS), grazing incidence small- and wide-angle scattering) measurements. After thermal annealing in nitrogen or vacuum, films thicker than 1.5 times the primary lattice spacing exhibit a 90-degree grain boundary, exposing a thin layer of vertical lamellae at the free interface, while exhibiting horizontal lamellae on the preferential (polystyrene brush) substrate. RSoXS measurements reveal the near-perfect orthogonality between the primary and sublattice orientations, demonstrating hierarchical patterning at the nanoscale.

2.
J Memb Sci ; 6782023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37465550

RESUMO

We systematically reduce the cross-link density of a PA network based on m-phenylene diamine by substituting a fraction of the trifunctional trimesoyl chloride cross-linking agent with a difunctional isophthaloyl analog that promotes chain extension, in order to elucidate robust design cues for improving the polyamide (PA) separation layer in reverse osmosis (RO) membranes for desalination. Thin films of these model PA networks are fully integrated into a composite membrane and evaluated in terms of their water flux and salt rejection. By incorporating 15 mol % of the difunctional chain extender, we reduce the cross-link density of the network by a factor of two, which leads to an 80 % increase in the free or unreacted amine content. The resulting swelling of the PA network in liquid water increases by a factor of two accompanied by a 30 % increase in the salt passage through the membrane. Surprisingly, this leads to a 30 % decrease in the overall permeance of water through the membrane. This conundrum is resolved by quantifying the microscopic diffusion coefficient of water inside the PA network with quasi-elastic neutron scattering. In the highest and lowest cross-link density networks, water shows strong signatures of confined diffusion. At short length scales, the water exhibits a translational diffusion that is consistent with the jump-diffusion mechanism. This translational diffusion coefficient is approximately five times slower in the lowest cross-linked density network, consistent with the reduced water permeance. This is interpreted as water molecules interacting more strongly with the increased free amine content. Over longer length scales the water diffusion is confined, exhibiting mobility that is independent of length scale. The length scales of confinement from the quasi-elastic neutron scattering experiments at which this transition from confined to translational diffusion occurs is on the order of (5 to 6) Å, consistent with complementary X-ray scattering, small angle neutron scattering, and positron annihilation lifetime spectroscopy measurements. The confinement appears to come from heterogeneities in the average inter-atomic distances, suggesting that diffusion occurs by water bouncing between chains and occasionally sticking to the polar functional groups. The results obtained here are compared with similar studies of water diffusion through both rigid porous silicates and ion exchange membranes, revealing robust design cues for engineering high-performance RO membranes.

3.
ACS Cent Sci ; 8(2): 268-274, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35233458

RESUMO

The relationship between Kuhn length l k , Kuhn monomer volume v 0, and plateau modulus G N 0, initially proposed by Graessley and Edwards for flexible polymers, and extended by Everaers, has a large gap in experimental data between the flexible and stiff regimes. This gap prevents the prediction of mechanical properties from the chain structure for any polymer in this region. Given the chain architecture, including a semiflexible backbone and side chains, conjugated polymers are an ideal class of material to study this crossover region. Using small angle neutron scattering, oscillatory shear rheology, and the freely rotating chain model, we have shown that 12 polymers with aromatic backbones populate a large part of this gap. We also have shown that a few of these polymers exhibit nematic ordering, which lowers G N 0. When fully isotropic, these polymers follow a relationship between l k , v 0, and G N 0, with a simple crossover proposed in terms of the number of Kuhn segments in an entanglement strand N e.

4.
Macromolecules ; 55(24)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36969109

RESUMO

Motivated by the problem of brittle mechanical behavior in recycled blends of high density polyethylene (HDPE) and isotactic polypropylene (iPP), we employ optical microscopy, rheo-Raman, and differential scanning calorimetry (DSC) to measure the composition dependence of their crystallization kinetics. Raman spectra are analyzed via multivariate curve resolution with alternating least-squares (MCR-ALS) to provide component crystallization values. We find that iPP crystallization behavior varies strongly with blend composition. Optical microscopy shows that three crystallization kinetic regimes correspond to three underlying two-phase morphologies: HDPE droplets in iPP, the inverse, and cocontinuous structures. In the HDPE droplet regime, iPP crystallization temperature decreases sharply with increasing HDPE composition. For cocontinuous morphologies, iPP crystallization is delayed, but the onset temperature changes little with the exact blend composition. In the iPP droplet regime, the two components crystallize nearly concurrently. Rheological measurements are consistent with these observations. DSC indicates that the enthalpy of crystallization of the blends is less than the weighted values of the individual components, providing a possible clue for the decreased iPP crystallization temperatures.

5.
Molecules ; 24(8)2019 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-31013893

RESUMO

Methacrylate analogs of quaternary ammonium salts functionalized with carboxylic (AMadh1 68.8% yield, AMadh2 53.2% yield) and methoxysilane (AMsil1 94.8% yield, AMsil2 36.0% yield) groups were synthesized via Menschutkin reaction. Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H, 13C and 2D 1H-13C heteronuclear single quantum coherence (HSQC) NMR), mass spectrometry, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were utilized to validate structures and characterize thermal properties of the novel multifunctional quaternary ammonium salts synthesized. The potential adhesive, coupling and antimicrobial properties of these multifunctional monomers encourage their further comprehensive evaluation in conventional and experimental copolymers and composites.


Assuntos
Antibacterianos/química , Antibacterianos/síntese química , Metacrilatos/química , Polimerização , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/síntese química
6.
ACS Comb Sci ; 21(4): 276-299, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30793882

RESUMO

Broad-band dielectric spectroscopy (BDS) provides a powerful method of characterizing relaxation dynamics in diverse materials. Here we describe and employ a novel instrument for high-throughput broad-band dielectric spectroscopy (HTBDS) that accelerates this capability, enabling simultaneous measurements of 48 samples. This capability is based around a coaxial switching system for rapid scanning between multiple samples on the same sample stage, coordinated with shared environmental control. We validate the instrument by measuring dielectric response in three polymers, distributed across 48 sample sites, and comparing results to measurements via a standard BDS instrument. Results are found to be reproducible and are in agreement with relaxation times from traditional BDS. We then employ HTBDS to establish mixing rules for glass transition temperatures, kinetic fragility indices, and segmental stretching exponents in a series of acrylate copolymers, a matter of considerable technological interest in a variety of technological applications. Results are consistent with the empirical Fox rule for the glass transition temperature Tg averaging in polymer blends, while they reveal a linear mixing rule for kinetic fragility indices. Finally, we test several proposed correlations between these distinct dynamical properties. These results demonstrate that HTBDS enables measurements of polymer relaxation at a throughput approximately 10 times higher than that of standard BDS approaches, opening the door to high-throughput materials design of dynamic response across a broad range of frequencies.


Assuntos
Resinas Acrílicas/química , Espectroscopia Dielétrica/métodos , Simulação por Computador , Cinética , Modelos Moleculares , Estrutura Molecular , Transição de Fase , Software , Temperatura de Transição
7.
J Phys Chem Lett ; 9(16): 4802-4807, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30063357

RESUMO

In conjugated polymers, solution-phase structure and aggregation exert a strong influence on device morphology and performance, making understanding solubility crucial for rational design. Using atomistic molecular dynamics (MD) and free-energy sampling algorithms, we examine the aggregation and solubility of the polymer PTB7, studying how side-chain structure can be modified to control aggregation. We demonstrate that free-energy sampling can be used to effectively screen polymer solubility in a variety of solvents but that solubility parameters derived from MD are not predictive. We then study the aggregation of variants of PTB7 including those with linear (octyl), branched (2-ethylhexyl), and cleaved (methyl) side chains, in a selection of explicit solvents and additives. Energetic analysis demonstrates that while side chains do disrupt polymer backbone stacking, solvent exclusion is a critical factor controlling polymer solubility.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35529422

RESUMO

Organic semiconductors may be processed from fluids using graphical arts printing and patterning techniques to create complex circuitry. Because organic semiconductors are weak van der Waals solids, the creation of glassy phases during processing is quite common. Because structural disorder leads to electronic disorder, it is necessary to understand these phases to optimize and control the electronic properties of these materials. Here we review the significance of glassy phases in organic semiconductors. We examine challenges in the measurement of the glass transition temperature and the accurate classification of phases in these relatively rigid materials. Device implications of glassy phases are discussed. Processing schemes that are grounded in the principles of glass physics and sound glass transition temperature measurement will more quickly achieve desired structure and electronic characteristics, accelerating the exciting progress of organic semiconductor technology development.

9.
Macromolecules ; 51(8)2018.
Artigo em Inglês | MEDLINE | ID: mdl-33071357

RESUMO

The Polymer Reference Interaction Site Model (PRISM) theory describes the equilibrium spatial-correlations of liquid-like polymer systems including melts, blends, solutions, block copolymers, ionomers, liquid crystalline polymers, and nanocomposites. Using PRISM theory, one can calculate thermodynamic (second virial coefficients, Flory-Huggins χ interaction parameters, potentials of mean force) and structural (pair correlation functions, structure factors) data for these macromolecular materials. Here, we present a Python-based, open-source framework, pyPRISM, for conducting PRISM theory calculations. This framework aims to simplify PRISM-based studies by providing a user-friendly scripting interface for setting up and numerically solving the PRISM equations. pyPRISM also provides data structures, functions, and classes that streamline PRISM calculations, allowing pyPRISM to be extended for use in other tasks, such as the coarse-graining of atomistic simulation force-fields or the modeling of experimental scattering data. The goal of this framework is to reduce the barrier to correctly and appropriately using PRISM theory and to provide a platform for rapid calculations of the structure and thermodynamics of polymeric fluids and nanocomposites.

10.
ACS Macro Lett ; 7(11): 1333-1338, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35651239

RESUMO

Intercrystallite molecular connections are widely recognized to tremendously impact the macroscopic properties of semicrystalline polymers. Because it is challenging to directly probe such connections, theoretical frameworks have been developed to quantify their concentrations and predict the mechanical properties that result from these connections. Tie-chain connectivity similarly impacts the electrical properties in semicrystalline conjugated polymers. Yet, its quantitative impact has eluded the community. Here, we assess the Huang-Brown model, a framework commonly used to describe the structural origins of mechanical properties in polyolefins, to quantitatively elucidate the effect of tie chains on the electrical properties of a model conjugated polymer. We found that a critical tie-chain fraction of 10-3 is needed to support macroscopic charge transport, below which intercrystallite connectivity limits charge transport, and above which intracrystallite disorder is the bottleneck. Extending the Huang-Brown framework to conjugated polymers enables the prediction of macroscopic electrical properties based on experimentally accessible morphological parameters. Our study implicates the importance of long and rigid polymer chains for efficient charge transport over device length scales.

11.
J Mater Chem A Mater ; 5(15): 6893-6904, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29170714

RESUMO

To realize the full promise of solution deposited photovoltaic devices requires processes compatible with high-speed manufacturing. We report the performance and morphology of blade-coated bulk heterojunction devices based on the small molecule donor p-DTS(FBTTh2)2 when treated with a post-deposition solvent vapor annealing (SVA) process. SVA with tetrahydrofuran improves the device performance of blade-coated films more than solvent additive processing (SA) with 1,8-diiodooctane. In spin-coating, SA and SVA achieve similar device performance. Our optimized, blade coated, SVA devices achieve power conversion efficiencies over 8 % and maintain high efficiencies in films up to ≈ 250 nm thickness, providing valuable resilience to small process variations in high-speed manufacturing. Using impedance spectroscopy, we show that this advantageous behavior originates from highly suppressed bimolecular recombination in the SVA-treated films. Electron microscopy and grazing-incidence X-ray scattering experiments show that SA and SVA both produce highly crystalline donor domains, but SVA films have a radically smaller domain size compared to SA films. We attribute the different behavior to variations in initial nucleation density and relative ability of SVA and SA to control subsequent crystal growth.

12.
Polymer (Guildf) ; 117: 1-10, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28824207

RESUMO

Raman spectroscopy is a popular method for non-invasive analysis of biomaterials containing polycaprolactone in applications such as tissue engineering and drug delivery. However there remain fundamental challenges in interpretation of such spectra in the context of existing dielectric spectroscopy and differential scanning calorimetry results in both the melt and semi-crystalline states. In this work, we develop a thermodynamically informed analysis method which utilizes basis spectra - ideal spectra of the polymer chain conformers comprising the measured Raman spectrum. In polycaprolactone we identify three basis spectra in the carbonyl region; measurement of their temperature dependence shows that one is linearly proportional to crystallinity, a second correlates with dipole-dipole interactions that are observed in dielectric spectroscopy and a third which correlates with amorphous chain behavior. For other spectral regions, e.g. C-COO stretch, a comparison of the basis spectra to those from density functional theory calculations in the all-trans configuration allows us to indicate whether sharp spectral peaks can be attributed to single chain modes in the all-trans state or to crystalline order. Our analysis method is general and should provide important insights to other polymeric materials.

13.
J Mater Chem A Mater ; 4(40): 15511-15521, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-28210491

RESUMO

Solution-processable small molecule photovoltaics based on the novel molecular donor, benzodithiophene terthiophene rhodanine (BTR), recently have shown maximum power conversion efficiencies above 8 % for active layer thicknesses up to 400 nm, using post process solvent vapor annealing (SVA) with tetrahydrofuran (THF). Here we report an in-situ study on the morphology evolution during SVA using the moderate solvent THF and the good solvent chloroform (CF). The combination of real-time grazing incidence X-ray diffraction (GIXD) and grazing incidence small angle X-ray scattering (GISAXS) allows us to draw a complete picture of the evolution of crystallinity and phase purity during post process annealing. We find that the relative crystallinity compared to the as-cast films is only modestly affected by SVA and solvent choice. However, both the phase purity and the characteristic domain sizes within the film vary significantly and are controlled by the solvent quality as well as exposure time. Using THF, films with high phase purity and desirable characteristic length scales of about 30 nm can be achieved, while the use of CF rapidly leads to excessive film coarsening and less preferable domain sizes on the order of 60 nm, too large for optimized charge separation.

14.
J Polym Sci B Polym Phys ; 54(13): 1202-1206, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29187773

RESUMO

The phase behavior of many conjugated polymers is rich with both crystalline and liquid crystalline phases. Recent computational efforts have identified the isotropic-to-nematic transition temperature for polymers such as poly(3-hexylthiophene-2,5-diyl) (P3HT). Herein, model predictions are combined with experimentally determined values of the equilibrium melting temperature as a function of chain length to provide the complete phase behavior for P3HT. Additionally, because a full description of the phase behavior requires proper accounting for the regioregularity of the chain, a thermodynamic relationship is derived to predict this behavior as a function of both chain length and regioregularity and the impact of regioregularity on the expected phase diagram is discussed.

15.
ACS Macro Lett ; 3(2): 130-135, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35590492

RESUMO

We report on measurements of order in semicrystalline, high molar mass poly(3-hexylthiophene) (P3HT) by solid-state 13C cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) measurements. The relative degree of crystallinity was estimated for two films with different drying conditions via X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Order determined by 13C NMR does not necessarily correlate with crystallinity, indicating that local order can occur in noncrystalline regions. Slow main chain dynamics influence the 13C NMR peak widths at lower temperatures (<0 °C), with side chain motions influencing the main chain motions. At higher temperatures (>0 °C), where narrower thiophene resonances are observed, these main chain conformation rearrangements occur on fast time scales (≪3 ms). This room-temperature dynamic disorder suggests that P3HT may be classified as a conformationally disordered (CONDIS) crystal.

16.
J Chem Phys ; 140(3): 034905, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25669412

RESUMO

We extend the exact solutions of the Di Marzio-Rubin matrix method for the thermodynamic properties, including chain density, of a linear polymer molecule confined to walk on a lattice of finite size. Our extensions enable (a) the use of higher dimensions (explicit 2D and 3D lattices), (b) lattice boundaries of arbitrary shape, and (c) the flexibility to allow each monomer to have its own energy of attraction for each lattice site. In the case of the large chain limit, we demonstrate how periodic boundary conditions can also be employed to reduce computation time. Advantages to this method include easy definition of chemical and physical structure (or surface roughness) of the lattice and site-specific monomer-specific energetics, and straightforward relatively fast computations. We show the usefulness and ease of implementation of this extension by examining the effect of energy variation along the lattice walls of an infinite rectangular cylinder with the idea of studying the changes in properties caused by chemical inhomogeneities on the surface of the box. Herein, we look particularly at the polymer density profile as a function of temperature in the confined region for very long polymers. One particularly striking result is the shift in the critical condition for adsorption due to surface energy inhomogeneities and the length scale of the inhomogeneities; an observation that could have important implications for polymer chromatography. Our method should have applications to both copolymers and biopolymers of arbitrary molar mass.


Assuntos
Transição de Fase , Polímeros/química , Algoritmos , Simulação por Computador , Modelos Químicos , Probabilidade , Propriedades de Superfície , Termodinâmica
17.
J Am Chem Soc ; 134(18): 7944-51, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22482879

RESUMO

The development of sorbents for next-generation CO(2) mitigation technologies will require better understanding of CO(2)/sorbent interactions. Among the sorbents under consideration are shape-selective microporous molecular sieves with hierarchical pore morphologies of reduced dimensionality. We have characterized the non-equilibrium CO(2) sorption of OMS-2, a well-known one-dimensional microporous octahedral molecular sieve with manganese oxide framework. Remarkably, we find that the degree of CO(2) sorption hysteresis increases when the gas/sorbent system is allowed to equilibrate for longer times at each pressure step. Density functional theory calculations indicate a "gate-keeping" role of the cation in the tunnel, only allowing CO(2) molecules to enter fully into the tunnel via a highly unstable transient state when CO(2) loadings exceed 0.75 mmol/g. The energy barrier associated with the gate-keeping effect suggests an adsorption mechanism in which kinetic trapping of CO(2) is responsible for the observed hysteretic behavior.

18.
ACS Macro Lett ; 1(11): 1347-1351, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35607170

RESUMO

Polyethylene (PE) has been widely used in a myriad of consumer products and critical infrastructure products such as underground gas and water pipes. These products are often made of blends of multiple types of PE with different molecular architectures. Although the long-term performance of these products is largely dictated by their local molecular structure, it has been studied mostly by indirect and bulk-averaging methods such as calorimetry and neutron scattering due to lack of chemical contrast for conventional imaging techniques. We demonstrate that broadband coherent anti-Stokes Raman scattering (CARS) microscopy can acquire images of the chemical composition and molecular orientation of a miscible semicrystalline PE blend with two different molecular architectures. We discuss the detailed crystal structure observed at different length scales and new insights it provides into polymer crystal morphology.

19.
Nanotechnology ; 19(49): 495703, 2008 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21730683

RESUMO

We report a quantitative study of the softening behavior of glassy polystyrene (PS) films at length scales on the order of 100 nm using nano-thermomechanometry (nano-TM), an emerging scanning probe technique in which a highly doped silicon atomic force microscopy (AFM) tip is resistively heated on the surface of a polymer film. The apparent 'softening temperature' T(s) of the film is found to depend on the logarithm of the square root of the thermal ramping rate R. This relation allows us to estimate a quasi-equilibrium (or zero rate) softening transition temperature T(s0) by extrapolation. We observe marked shifts of T(s0) with decreasing film thickness, but the nature of these shifts, and even their sign, depend strongly on both the thermal and mechanical properties of the supporting substrate. Finite element simulations suggest that thin PS films on rigid substrates with large thermal conductivities lead to increasing T(s0) with decreasing film thickness, whereas softer, less thermally conductive substrates promote reductions in T(s0). Experimental observations on a range of substrates confirm this behavior and indicate a complicated interplay between the thermal and mechanical properties of the thin PS film and the substrate. This study directly points to relevant factors for quantitative measurements of thermophysical properties of materials at the nanoscale using this nano-TM based method.

20.
Tissue Eng ; 12(6): 1597-606, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16846355

RESUMO

A new method has been developed to define the directional parameter and characterize the structural anisotropy of a highly porous structure with extensive pore interconnectivity and surface area, such as scaffolds in tissue engineering. This new method called intercept segment deviation (ISD) was validated through the comparison of structural anisotropy from ISD measurements with mechanical anisotropy from finite-element stress analysis. This was carried out on a generated two-dimensional (2D) image of a two-phase material and a real three-dimensional (3D) image of a tissue scaffold. The performance of other methods for quantification of the directional parameter was also assessed. The results indicate that the structural anisotropy obtained from this new method conforms to the actual mechanical anisotropy and provides a better prediction of the material orientation than the other methods for the 2D and 3D images studied.


Assuntos
Materiais Biocompatíveis , Teste de Materiais , Anisotropia , Interpretação Estatística de Dados , Porosidade , Valor Preditivo dos Testes , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...